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Reactive

● Reactive as Responsive
Quickly prompt to user actions

● Reactive Data binding
Declarative, as opposed to Imperative
 a = b+3
e.g. Spreadsheets

● Reactive streams as Asynchronous Data Streams

● Reactive as Reactive Manifesto



Reactive Manifesto

Responsive -> Low latency

Resilient -> Stay responsive on failure by Failure Detectors

Elastic -> Scale as needed by Cluster + Sharding

Message-Driven -> Async messages as only communication between components by 

Actors + Streams











Make building powerful concurrent & 
distributed applications simple.

Akka is a toolkit and runtime for building 
highly concurrent, distributed, and 
resilient message-driven applications on 
the JVM





Actor



Actor Model Frameworks / Languages

● Erlang / Elixer
● Akka (JVM/Akka.net)
● Orleans (.NET)
● CAF (C++)
● Celluloid (Ruby)
● Pulsar (Python)



행위자 모델 또는 액터 모델(actor model)은 컴퓨터 과학에서 행위자를 병행 
연산의 범용적 기본 단위로 취급하는 병행 컴퓨팅의 수학적 모델이다. 
행위자가 받는 메시지에 대응하여, 행위자는 자체적인 결정을 하고 더 많은 
행위자를 만들며, 더 많은 메시지를 보내고, 다음에 받을 메시지에 대한 응답 
행위를 결정할 수 있다. 행위자는 개인 상태를 수정할 수 있지만, 메시지를 
통해서만 서로에게 영향을 줄 수 있다. (락의 필요성을 제거함)
[Wikipedia]

Actor Model

● 1973, publication by Carl Hewitt, Peter Bishop, and Richard Steiger titled 
A Universal Modular Actor Formalism for Artificial Intelligence

● 1986, Erlang adopted the actor model as the foundation for both 
concurrent programming and distributed programming

● 2009, Jones Bonèr created the Akka framework as an Erlang-inspired 
Scala implementation of the actor model.

https://ko.wikipedia.org/wiki/%EC%BB%B4%ED%93%A8%ED%84%B0_%EA%B3%BC%ED%95%99
https://ko.wikipedia.org/wiki/%EB%B3%91%ED%96%89_%EC%BB%B4%ED%93%A8%ED%8C%85
https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99%EC%A0%81_%EB%AA%A8%EB%8D%B8
https://ko.wikipedia.org/w/index.php?title=%EB%A9%94%EC%8B%9C%EC%A7%80_%EC%A0%84%EB%8B%AC&action=edit&redlink=1
https://ko.wikipedia.org/wiki/%EC%BA%A1%EC%8A%90%ED%99%94


A method of concurrency in which the universal primitive 
is an actor

Actor Model



Actor

● Concurrency primitive
● Persistent
● Encapsulate internal state
● Actors interact exclusively via asynchronous messages
- Actor sends messages
- Actor change its state
- Actor change its behavior
- Actor create more actors



Actor can ...

● Actor sends messages and response

● Actor change its state

● Actor change its behavior

● Actor create more actors

● Actor process exactly one message at a time



Akka Actor

ActorRef, mailbox, actor, dispatcher

이미지 출처: akka in action



Akka Actor Path

● Identifies an Actor
● May also represent a proxy / forwarder to an Actor
● Contains location and transport information
● Location transparency

○ one path may represent many actors (router pool)
○ one actor may have many addresses (cluster)



The running state of an actor is monitored and managed by 
another actor

Supervision



Akka Actor Hierarchy



Demo
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Monitoring

Device

Akka based
Rule Engine System



Scale up with router



Router



Routers

이미지 출처: akka essentials

● Pool - The router creates routees as child actors and removes them from the router if they 
terminate.

● Group - The routee actors are created externally to the router and the router sends messages 
to the specified path using actor selection, without watching for termination.

                 *  a pool needs the number of routee instances, and a group needs a list of routee paths.



Routers

1. akka.actor.deployment {
2.  /parent/router1 {
3.    router = round-robin-pool
4.    nr-of-instances = 5
5.  }
6. }

1. val poolRouter: ActorRef =
2.  context.actorOf( FromConfig.props(Props[Worker]), "router1")

1. val router2: ActorRef =
2.  context.actorOf( RoundRobinPool(5).props(Props[Worker]), "router2")



Routers

1. akka.actor.deployment {
2.  /parent/router3 {
3.    router = round-robin- group
4.    routees.paths = [ "/user/workers/w1" , "/user/workers/w2" , 

"/user/workers/w3" ]
5.  }
6. }

1. val groupRouter: ActorRef =
2.  context.actorOf(FromConfig.props(), "router3")
1. val router3: ActorRef =
2.  context.actorOf( FromConfig.props(), "router3")

1. val router4: ActorRef =
2.  context.actorOf( RoundRobinGroup(paths).props(), "router4")



● RoundRobinPool and RoundRobinGroup

● RandomPool and RandomGroup

● BalancingPool

● SmallestMailboxPool

● BroadcastPool and BroadcastGroup

● ScatterGatherFirstCompletedPool and ScatterGatherFirstCompletedGroup

● TailChoppingPool and TailChoppingGroup

● ConsistentHashingPool and ConsistentHashingGroup

Routing Logic



Demo
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Scale out with cluster



Akka Cluster



Akka Cluster

이미지 출처: akka in action



Akka Cluster Membership

이미지 출처: akka in action



Akka Cluster Joining the cluster

이미지 출처: akka in action



Akka Cluster Leaving and Exiting

이미지 출처: akka in action



Demo



● Non-concurrent system
● None-concurrent communication is involved
● There is no mutable state

Anti Use-Cases

출처 : Introduction to the Actor Model for Concurrent Computation: Tech Talks @ AppNexus



Books
● akka in action
● mastering akka
● leaning akka
● akka essentials

Talks
● Introduction to the Actor Model for Concurrent Computation: Tech 

Talks @ AppNexus
● Introduction to Akka Actors with Java 8
● OpenCredo: Spring Boot Microservices vs Akka Actor Cluster by 

Lorenzo Nicora

Docs
● akka.io documentation

References



Thanks


