Akka 101

A =

+jeado.ko

— “Awair” Software Engineer

— “kt” loT Platform Researcher

— “http://webframeworks.kr” AngulardS Tutorial Contributor
— “Google Developer Expert”

— “A|ZFSHM| 2 AngulardS wikibooks” Author

Smart Sensing https://getawair.com

ors are designed and tested to accurately

Awair's s
identify the five keys factors of air quality. Each sensor is
strategically placed to ensure optimal airflow and

consi

nt readings.

You can customize the triggers to
automatically activate your attached device.

.
s e s e s s e

.

INtro

Reactive

Reactive

e Reactive as Responsive
Quickly prompt to user actions

e Reactive Data binding /. Clickstream

Declarative, as opposed to Imperative *——

a = b+3 1 buffer(clickStream.throttle(250ms))

e.g. Spreadsheets 2

o—©O o 8
e Reactive streams as Asynchronous Data Streams
map(‘get length of list’)
e Reactive as Reactive Manifesto |
filter(x >= 2)
O, O

Multiple clicks stream

Reactive Manifesto

Responsive -> Low latency
Resilient -> Stay responsive on failure by Failure Detectors
Elastic -> Scale as needed by Cluster + Sharding

Message-Driven -> Async messages as only communication between components by

Actors + Streams

A

Rewous:ve
/7 N
ELAW’C ¢ 2, Ri’ﬂugw'r

F——

dropcam -

Bl Lightbend

amazon
webservices™

Bl Lightbend

A akka

LEARN MORE

©

Actor-based message-driven runtime

; S
Akka is an actor-based message-driven runtime for managing concurrency, 0 We're dEIwenng the future
elasticity and resilience on the JVM with support for both Java and Scala. of money to over 148

In Akka, the communication between services uses messaging primitives that million people worldwide
optimize for CPU utilization, low latency, high throughput and scalability— with Akka.

hardened from years of contributions from the open source community.
— PayPal

Akka embraces the reality of unplanned errors and adopts a pragmatic “Let It
Crash” philosophy using supervision and self-healing to ensure impacted
components are reset to a stable state and restarted upon failure.

AR akka

Make building powerful concurrent &
distributed applications simple.

Akka is a toolkit and runtime for building
highly concurrent, distributed, and

resilient message-driven applications on
the JVM

A& akka

Actors - simple & high performance concurrency
Cluster / Remoting - location transparency, resilience
Cluster Sharding - and more prepackaged patterns

Streams - back-pressured stream processing
Persistence - Event Sourcing

HTTP - complete, fully async and reactive HTTP Server
Official Kafka, Cassandra, DynamoDB integrations, tons

more in the community

Complete Java & Scala APIs for all features (since day 1)
Typed coming soon...

Actor

Actor Model Frameworks / Languages

Erlang / Elixer

Akka (JVM/Akka.net)
Orleans (.NET)

CAF (C++)

Celluloid (Ruby)
Pulsar (Python)

Actor Model

e 1973, publication by Carl Hewitt, Peter Bishop, and Richard Steiger titled
A Universal Modular Actor Formalism for Artificial Intelligence

e 1986, Erlang adopted the actor model as the foundation for both
concurrent programming and distributed programming

e 2009, Jones Bonér created the Akka framework as an Erlang-inspired
Scala implementation of the actor model.

HAX D = ME D (actor model)2 ZEE WUSHOlA HRAXE HH
Al HEXN J|2 U2 FZole 9 AFE S #=5t& QEO|LC,
SHRAXPOF = HIAIK O CHSotY, K= AXE 2826t 0 H2
HRATIE HEMH, H X2 HAMXNE EWHD, TS0 &2 IJ1|A|X|01| st s€
HRE ZHE o= ULH ARG = R HEHHE =83 = UK SH HAIKE
SHME MZ20IH &= = = ULH (H2Y ERE= HAHE)

g ol
7___ -
©
()
Q.
DL,

https://ko.wikipedia.org/wiki/%EC%BB%B4%ED%93%A8%ED%84%B0_%EA%B3%BC%ED%95%99
https://ko.wikipedia.org/wiki/%EB%B3%91%ED%96%89_%EC%BB%B4%ED%93%A8%ED%8C%85
https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99%EC%A0%81_%EB%AA%A8%EB%8D%B8
https://ko.wikipedia.org/w/index.php?title=%EB%A9%94%EC%8B%9C%EC%A7%80_%EC%A0%84%EB%8B%AC&action=edit&redlink=1
https://ko.wikipedia.org/wiki/%EC%BA%A1%EC%8A%90%ED%99%94

Actor Model

A method of concurrency in which the universal primitive
is an actor

Actor

Concurrency primitive

Persistent

Encapsulate internal state

Actors interact exclusively via asynchronous messages
- Actor sends messages

- Actor change its state

- Actor change its behavior

- Actor create more actors

Actor Messages

Behavior lE E E @— Behavior

Actor

—_ .

Child %
Child

Actor can ...

e Actor sends messages and response
e Actor change its state

e Actor change its behavior

e Actor create more actors

e Actor process exactly one message at a time

Akka Actor

ActorRef, mailbox, actor, dispatcher

. Dispatcher pushes
|D'5pamherl — down on the mailbox.

Mailbox
N\ Push!

mi]— ActorRef me

m5

m4 >_ Messages are temporarily m6

m3 stored in the mailbox. e

m2 m4

m1 J m3

l m2

Do something with a message
o= here, one at a time.

The actor needs to process

m1 | — the message that falls through.

Actor
Actor

O0l0| Xl = XH: akka in action

Akka Actor Path

All parts form an "ActorPath”

Protocol Address

' akkaicp:{,}MySyste m@Ilocalhost:9001/user/actorName1

ActorSystem Path

|dentifies an Actor

May also represent a proxy / forwarder to an Actor
Contains location and transport information

Location transparency

o one path may represent many actors (router pool)
o one actor may have many addresses (cluster)

Supervision

The running state of an actor is monitored and managed by
another actor

Akka Actor Hierarchy

AMQI' Himmh\f You don't interact
with these other
“Root actor” root actors as a user.

We'll cover in the future.

“Top level actors”

Ignare the system
acter hierarchy for
now. It mokes lots
of magic happen.
User actor We'll cover in the future.

hierarchy

Demo

Co2
Monitoring
Device

Akka based
Rule Engine System

Scale up with router

Router

Routers

e Pool - The router creates routees as child actors and removes them from the router if they

terminate.
e Group - The routee actors are created externally to the router and the router sends messages

to the specified path using actor selection, without watching for termination.

* a pool needs the number of routee instances, and a group needs a list of routee paths.

i..i"..l:..... P =
Incoming Y PP .
MEE&EEH[S} [N A i —
Message -
AR Messages are routed
A to actors based on
the algorithm
employed

Actors

"Routees”

Ol0l XI = X: akka essentials

Routers

Routers

Routing Logic

¢ RoundRobinPool and RoundRobinGroup
e RandomPool and RandomGroup

e BalancingPool

e SmallestMailboxPool

e BroadcastPool and BroadcastGroup
e ScatterGatherFirstCompletedPool and ScatterGatherFirstCompletedGroup
e TailChoppingPool and TailChoppingGroup

e ConsistentHashingPool and ConsistentHashingGroup

Demo

Co2

Monitoring
Device

Scale out with cluster

Akka Cluster

Akka Cluster

Every node contains an
actor system. The actor

The cluster is - systems need to have the
a ring of nodes. @ B / same name to be part of

\ @ -— the same cluster.

o0 o o0
(node 1, nede 2, node 3, node 4)
ololo|¥

Noded) L '\L Y

A list of member nodes
° o ° is maintained in a current
cluster state. The actor

b _4 systems gossip to each
other about this state.

O0l0| Xl = XH: akka in action

Akka Cluster Membership

Mode 1:
Seed role

Minimal setup
for our cluster:

3 seeds
/ 1 masters
3 workers
Node 4:

Master role

Mode 5:
Master role

Cluster

Seed nodes: (1, 2, 3)
Master nodes: (4, 5)
Worker nodes: (6,7,8)

Node 7:
Waorker role
Mode 8:
Worker role

Mode 6:
Woarker role

O0l0| Xl = XH: akka in action

Akka Cluster Joining the cluster

1. Initialize the cluster with first seed node 2. More seeds join the cluster as first contact

Seed node 1 joins
itsedl automatically

Cluster

Seed nodas: (1,2)
Joining: (3)

Cluster
Seed nodes: (1)

3. Other nodes can also join using a seed list 4. Modes can join as long as one seed exists

riock 2 Cluster
responds fastest Cluster Node 3 Svasd rosia 13)
and handles join Seud nodes: (1. 2, 3) respands fastest A mw =
of node 4 Joining nodes: 4. 5 and handiés join :

B Worker nodes: (4)

Join

Mode 4: Worker role
seed list (1, 2, 3)

Mode 7: Worker role
seed list {1, 2, 3)

Mode &: Worker role
seadlist (1, 2, 3)

00| XI = X: akka in action

Akka Cluster Leaving and Exiting

1. Seed 1 leaves the cluster 2. Seed 1 detected as unreachable

! Seed node 1 :
Seed node 1 i i
: : cluster node 5
1 ' is shutdown
Leave :

Cluster
Leader: Mode 1

Cluster
Leader; Node 1

Node 1: Leaving Node 1: Exiting,
Mode 2: Up : unreachable
Mode 3: Up - MNode 2: Up

Mode 3 Up

3. Seed 2 becomes leader.

Cluster

Leader: Node 2
Node 1: Removed
MNode 2: Up
Mode 3: Up

[Cluster {akka:/ /words)] Cluster Node [akka.tep://words@127.0.0.1:2552]

- Marking exiting node{s) as UNREACHABLE

[Member (address = akka.tep://words@l127.0.0.1:2551, status = Exiting)].

This is expected and they will be removed.

[Cluster{akka://words)] Cluster Node [akka.tocp://words@l27.0.0.1:2552]

i - Leader is removing exiting node [akka.tcp://words@127.0.0.1:2551])

00| XI = X: akka in action

Exiti d nod
Leader removes the exiting node has RLHEE:?E:E :tat:

Demo

Anti Use-Cases

e Non-concurrent system
e None-concurrent communication is involved
e There is no mutable state

81| actor Foo {

02| def receive = {

e3| case FooRequest(x) =>

04| val x = database.runQuery(“select * from foo where", x)
05 | val y = redis.get(x.fookey)

06 | sender sendMsg computeResponse(x, y)

o7 | }

08 | }

es| }

01| def fooResult(x) = Future {

e4 | val x = database.runQuery(“select * from foo where", x)
os | val y = redis.get(x.fookey)

06 | computeResponse(x, V)

e7| }

Z X : Introduction to the Actor Model for Concurrent Computation: Tech Talks @ AppNexus

References

Books

e akka in action
e mastering akka
e leaning akka

e akka essentials

Talks
e Introduction to the Actor Model for Concurrent Computation: Tech
Talks @ AppNexus
e Introduction to Akka Actors with Java 8

e OpenCredo: Spring Boot Microservices vs Akka Actor Cluster by
Lorenzo Nicora

Docs
e akka.io documentation

Thanks

