
Akka 101

고재도

+jeado.ko
haibane84@gmail.com

 - “Awair” Software Engineer

 - “kt” IoT Platform Researcher

 - “http://webframeworks.kr” AngularJS Tutorial Contributor

 - “Google Developer Expert”

- “시작하세요 AngularJS wikibooks” Author

https://getawair.com

Intro

Reactive

????????????

Reactive

● Reactive as Responsive
Quickly prompt to user actions

● Reactive Data binding
Declarative, as opposed to Imperative
 a = b+3
e.g. Spreadsheets

● Reactive streams as Asynchronous Data Streams

● Reactive as Reactive Manifesto

Reactive Manifesto

Responsive -> Low latency

Resilient -> Stay responsive on failure by Failure Detectors

Elastic -> Scale as needed by Cluster + Sharding

Message-Driven -> Async messages as only communication between components by

Actors + Streams

Make building powerful concurrent &
distributed applications simple.

Akka is a toolkit and runtime for building
highly concurrent, distributed, and
resilient message-driven applications on
the JVM

Actor

Actor Model Frameworks / Languages

● Erlang / Elixer
● Akka (JVM/Akka.net)
● Orleans (.NET)
● CAF (C++)
● Celluloid (Ruby)
● Pulsar (Python)

행위자 모델 또는 액터 모델(actor model)은 컴퓨터 과학에서 행위자를 병행
연산의 범용적 기본 단위로 취급하는 병행 컴퓨팅의 수학적 모델이다.
행위자가 받는 메시지에 대응하여, 행위자는 자체적인 결정을 하고 더 많은
행위자를 만들며, 더 많은 메시지를 보내고, 다음에 받을 메시지에 대한 응답
행위를 결정할 수 있다. 행위자는 개인 상태를 수정할 수 있지만, 메시지를
통해서만 서로에게 영향을 줄 수 있다. (락의 필요성을 제거함)
[Wikipedia]

Actor Model

● 1973, publication by Carl Hewitt, Peter Bishop, and Richard Steiger titled
A Universal Modular Actor Formalism for Artificial Intelligence

● 1986, Erlang adopted the actor model as the foundation for both
concurrent programming and distributed programming

● 2009, Jones Bonèr created the Akka framework as an Erlang-inspired
Scala implementation of the actor model.

https://ko.wikipedia.org/wiki/%EC%BB%B4%ED%93%A8%ED%84%B0_%EA%B3%BC%ED%95%99
https://ko.wikipedia.org/wiki/%EB%B3%91%ED%96%89_%EC%BB%B4%ED%93%A8%ED%8C%85
https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99%EC%A0%81_%EB%AA%A8%EB%8D%B8
https://ko.wikipedia.org/w/index.php?title=%EB%A9%94%EC%8B%9C%EC%A7%80_%EC%A0%84%EB%8B%AC&action=edit&redlink=1
https://ko.wikipedia.org/wiki/%EC%BA%A1%EC%8A%90%ED%99%94

A method of concurrency in which the universal primitive
is an actor

Actor Model

Actor

● Concurrency primitive
● Persistent
● Encapsulate internal state
● Actors interact exclusively via asynchronous messages
- Actor sends messages
- Actor change its state
- Actor change its behavior
- Actor create more actors

Actor can ...

● Actor sends messages and response

● Actor change its state

● Actor change its behavior

● Actor create more actors

● Actor process exactly one message at a time

Akka Actor

ActorRef, mailbox, actor, dispatcher

이미지 출처: akka in action

Akka Actor Path

● Identifies an Actor
● May also represent a proxy / forwarder to an Actor
● Contains location and transport information
● Location transparency

○ one path may represent many actors (router pool)
○ one actor may have many addresses (cluster)

The running state of an actor is monitored and managed by
another actor

Supervision

Akka Actor Hierarchy

Demo

Co2
Monitoring

Device

Akka based
Rule Engine System

Scale up with router

Router

Routers

이미지 출처: akka essentials

● Pool - The router creates routees as child actors and removes them from the router if they
terminate.

● Group - The routee actors are created externally to the router and the router sends messages
to the specified path using actor selection, without watching for termination.

 * a pool needs the number of routee instances, and a group needs a list of routee paths.

Routers

1. akka.actor.deployment {
2. /parent/router1 {
3. router = round-robin-pool
4. nr-of-instances = 5
5. }
6. }

1. val poolRouter: ActorRef =
2. context.actorOf(FromConfig.props(Props[Worker]), "router1")

1. val router2: ActorRef =
2. context.actorOf(RoundRobinPool(5).props(Props[Worker]), "router2")

Routers

1. akka.actor.deployment {
2. /parent/router3 {
3. router = round-robin- group
4. routees.paths = ["/user/workers/w1" , "/user/workers/w2" ,

"/user/workers/w3"]
5. }
6. }

1. val groupRouter: ActorRef =
2. context.actorOf(FromConfig.props(), "router3")
1. val router3: ActorRef =
2. context.actorOf(FromConfig.props(), "router3")

1. val router4: ActorRef =
2. context.actorOf(RoundRobinGroup(paths).props(), "router4")

● RoundRobinPool and RoundRobinGroup

● RandomPool and RandomGroup

● BalancingPool

● SmallestMailboxPool

● BroadcastPool and BroadcastGroup

● ScatterGatherFirstCompletedPool and ScatterGatherFirstCompletedGroup

● TailChoppingPool and TailChoppingGroup

● ConsistentHashingPool and ConsistentHashingGroup

Routing Logic

Demo

Co2
Monitoring

Device

Akka based
Rule Engine System

Rule
Engine

Rule
Engine

Rule
Engine

Rule
Engine

Rule
Engine

Router

Scale out with cluster

Akka Cluster

Akka Cluster

이미지 출처: akka in action

Akka Cluster Membership

이미지 출처: akka in action

Akka Cluster Joining the cluster

이미지 출처: akka in action

Akka Cluster Leaving and Exiting

이미지 출처: akka in action

Demo

● Non-concurrent system
● None-concurrent communication is involved
● There is no mutable state

Anti Use-Cases

출처 : Introduction to the Actor Model for Concurrent Computation: Tech Talks @ AppNexus

Books
● akka in action
● mastering akka
● leaning akka
● akka essentials

Talks
● Introduction to the Actor Model for Concurrent Computation: Tech

Talks @ AppNexus
● Introduction to Akka Actors with Java 8
● OpenCredo: Spring Boot Microservices vs Akka Actor Cluster by

Lorenzo Nicora

Docs
● akka.io documentation

References

Thanks

